
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 225
Volume 2, Issue 2, April 2011

Synchronization and Coordination among

Multi-Agent Systems in Distributed Data

Mining

Thulasi.Bikku, Asst.Professor and Dr. Ananda Rao . Akepogu, Professor

Computer Science Department, Narayana Engineering College, Andhra Pradesh, INDIA.

thulasi.bikku@gmail.com, thulasi_bikku@yahoo.com

Computer Science Department,JNTU Anantapur, Anantapur, Andhra Pradesh, INDIA.

akepogu_@yahoo.co.in, akepogu@gmail.com

Abstract: Data mining technology has emerged, for

identifying patterns and trends from large quantities of

data. The Data Mining technology normally adopts data

integration method to generate Data warehouse, which is

used to gather all data into a central repository, and then

run an algorithm against that data to extract the useful

Patterns and knowledge evaluation. However, a single

data-mining technique has not been proven appropriate for

every domain and data set. Distributed data mining is

originated from the need of mining over decentralized data

sources. Multi-agent systems (MAS) often deal with

complex applications that require distributed problem

solving. In many applications the individual and collective

behavior of the agents depends on the observed data from

distributed data sources. Since multi-agent systems are

often distributed and agents have proactive and reactive

features which are very useful for Knowledge Management

Systems, combining DDM with MAS for data intensive

applications is appealing. The integration of multi-agent

system and distributed data mining, also known as multi

agent based distributed data mining.

The increasing demand to extend data mining

technology to data sets inherently distributed among a

large number of autonomous and heterogeneous sources

over a network with limited bandwidth has motivated the

development of several approaches to distributed data

mining and knowledge discovery, of which only a few make

use of agents. We briefly review existing approaches and

argue for the potential added value of using agent

technology in the domain of knowledge discovery. In this

paper we propose an approach to distributed data

clustering, outline its agent-oriented implementation, and

security attacks in which agents may incur. Its core

problem concerns collaborative work of distributed

software in design of multi-agent system destined for

distributed data mining and classification.

Keywords: Distributed Data Mining, Multi-Agent

Systems, Multi Agent Data Mining, Multi-Agent Based

Distributed Data Mining.
1. Introduction

Data Mining (DM), originated from

knowledge discovery from databases (KDD), the

large variety of DM techniques which have been

developed over the past decade includes methods for

pattern-based similarity search, cluster analysis,

decision-tree based classification, generalization

taking the data cube or attribute-oriented induction

approach, and mining of association rules [13].

Distributed data mining (DDM) mines data from data

sources regardless of their physical locations. The

need for such characteristic arises from the fact that

data produced locally at each site may not often be

transferred across the network due to the Excessive

amount of data and security issues. Recently, DDM

has become a critical component of knowledge based

systems because its decentralized architecture reaches

every network such as weather databases, financial

data portals, or emerging disease information systems

has been recognized by industrial companies as an

opportunity of major revenues from applications such

as warehousing, process control, and customer

services, where large amounts of data are stored.

Data Mining still poses many challenges to the

research community. The main challenges in data

mining are: 1) Data mining has to deal with huge

amounts of data located at different physical

locations. 2) Data mining is computationally

intensive process involving very large data i.e. more

than terabytes. So, it is necessary to partition and

distribute the data for parallel processing to achieve

acceptable time and space performance. 3) The data

stored for particular domain the Input data changes

rapidly. In these cases, knowledge has to be mined

fast and efficiently in order to be usable and updated.

2. Multi-Agents Behavior
DDM is a complex system focusing on the

distribution of data resources over the network as

mailto:thulasi.bikku@gmail.com
mailto:akepogu_@yahoo.co.in
mailto:akepogu@gmail.com

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 226
Volume 2, Issue 2, April 2011

well as extraction of data from those resources. The

very core of DDM systems is the scalability as the

system configuration may be altered time to time,

therefore designing DDM systems deals with great

details of software engineer issues, such reusability,

extensibility, compatibility, flexibility and

robustness. For these reasons, agents’ characteristics

are desirable for DDM systems.

Autonomy of the system: A DM agent here is

considered as a modular extension of a data

management system to deliberatively handle the

access to the data source in agreement with

constraints on the required autonomy of the system,

data and model. This is in full compliance with the

paradigm of cooperative information systems [12].

Scalability of DM to massive distributed data: To

reduce network and DM application server load, DM

agents migrate to each of the local data sites in a

DDM system on which they may perform mining

tasks locally, and then either return with or send

relevant pre-selected patterns to their originating

server for further processing. Experiments in using

mobile information filtering agents in distributed data

environments are encouraging [16].

Multi-strategy DDM: For some complex application

settings an appropriate combination of multiple data

mining techniques may be more beneficial than

applying just one particular one. DM agents may

choose depending on the type of data retrieved from

different sites and mining tasks to be done. The

learning of multi-strategy selection of DM methods is

similar to the adaptive selection of coordination

strategies in a multi-agent system as proposed.

Collaborative DM: DM agents may operate

independently on data they have gathered at local

repositories, and then combine their respective

patterns or they may agree to share potential

knowledge as it is discovered.

Security and Trustworthiness: Any agent-based

DDM system has to cope with the problem of

ensuring data security and privacy. However, any

failure to implement least privilege at a data source,

that means endowing subjects with only enough

permissions to discharge their duties, could give any

mining agent unsolicited access to sensitive data.

Moreover, any mining operation performed by agents

of a DDM system lacking sound security architecture

could be subject to eavesdropping, data tampering, or

denial of service attacks. Agent code and data

integrity is a crucial issue in secure DDM: Subverting

or hijacking a DM agent places a trusted piece of

(mobile) software. In addition, data integration or

aggregation in a DDM process introduces concern

regarding inference attacks as a potential security

threat. Data mining agents may infer sensitive

information even from partial integration to a certain

extent and with some probability. This problem,

known as the so called inference problem, occurs

especially in settings where agents may access data

sources across trust boundaries which enable them to

integrate implicit knowledge from different sources

using commonly held rules of thumb.

Furthermore, the decentralization property

seems to fit best with the DDM requirement in order

to avoid security treats. At each data repository,

mining strategy is deployed specifically for the

certain domain of data.

3. Open Problems Strategy
Several systems have been developed for distributed

data mining. These systems can be classified

according to their strategy to three types; central

learning, meta-learning, and hybrid learning.

3.1 Central learning strategy is when all the data

can be gathered at a central site and a single model

can be build. The only requirement is to be able to

move the data to a central location in order to merge

them and then apply sequential DM algorithms. This

strategy is used when the geographically distributed

data is small. The strategy is generally very

expensive but also more accurate[18]. The process of

gathering data in general is not simply a merging

step; it depends on the original distribution. Agent

technology is not very preferred in such strategy.

3.2 Meta-learning strategy offers a way to mine

classifiers from homogeneously distributed data.

Meta-learning follows three main steps. 1) To

generate base classifiers at each site using a classifier

learning algorithms. 2) To collect the base classifiers

at a central site, and produce meta-level data from a

separate validation set and predictions generated by

the base classifier on it. 3) To generate the final

classifier (meta-classifier) from meta-level data via a

combiner or an arbiter. Copies of classifier agent will

exist or deployed on nodes in the network being used.

Perhaps the most mature systems of agent-based

meta-learning systems are: JAM system [19], and

BODHI [19].

3.3 Hybrid learning strategy is a technique that

combines local and centralized learning for model

building [20]; for example, Papyrus [21] is designed

to support both learning strategies. In contrast to

JAM and BODHI, Papyrus can not only move

models from site to site, but can also move data when

that strategy is desired. Papyrus is a specialized

system which is designed for clusters while JAM and

BODHI are designed for data classification. The

major criticism of such systems is that it is not

always possible to obtain an exact final result, i.e. the

global knowledge model obtained may be different

from the one obtained by applying the one model

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 227
Volume 2, Issue 2, April 2011

approach (if possible) to the same data.

Approximated results are not always a major

concern, but it is important to be aware of that.

Moreover, in these systems hardware resource usage

is not optimized. If the heavy computational part is

always executed locally to data, when the same data

is accessed concurrently, the benefits coming from

the distributed environment might vanish due to the

possible strong performance degradation. Another

drawback is that occasionally, these models are

induced from databases that have different schemas

and hence are incompatible.

Autonomous agent can be treated as a

computing unit that performs multiple tasks based on

a dynamic configuration. The agent interprets the

configuration and generates an execution plan to

complete multiple tasks. [13], [23], [14], [12], and

[16] discuss the benefits of deploying agents in DDM

systems. Nature of MAS is decentralization and

therefore each agent has only limited view to the

system. The limitation somehow allows better

security as agents do not need to observe other

irrelevant surroundings. Agents, in this way, can be

programmed as compact as possible, in which light-

weight agents can be transmitted across the network

rather than the data which can be more bulky. Being

able to transmit agents from one to another host

allows dynamic organization of the system. For

example, mining agent MA1, located at repository

R1, posses algorithm A1. Data mining task T1 at

repository R2 is instructed to mine the data using A1.

In this setting, transmitting A1 to R2 is a probable

way rather than transfer all data from R2 to R1 where

A1 is available.

4. Agent-Based Distributed Data Mining

(ADDM)
ADDM takes data mining as a basis

foundation and is enhanced with agents; therefore,

this novel data mining technique inherits all powerful

properties of agents and, as a result, yields desirable

characteristics. In general, constructing an ADDM

system concerns three key characteristics:

interoperability, dynamic system configuration, and

performance aspects, discussed as follows. 1)

Interoperability concerns, not only collaboration of

agents in the system, but also external interaction

which allow new agents to enter the system

seamlessly. The architecture of the system must be

open and flexible so that it can support the interaction

including communication protocol, integration

policy, and service directory. 2) Communication

protocol covers message encoding, encryption, and

transportation between agents. Integration policy

specifies how a system behaves when an external

component, such as an agent or a data site, requests

to enter or leave. 3) In relation with the

interoperability characteristic, dynamic system

configuration, that tends to handle a dynamic

configuration of the system, is a challenge issue due

to the complexity of the planning and mining

algorithms. A mining task may involve several agents

and data sources, in which agents are configured to

equip with an algorithm and deal with given data

sets. In distributed environment, tasks can be

executed in parallel, in exchange, concurrency issues

arise. Quality of service control in performance of

data mining and system perspectives is desired;

however it can be derived from both data mining and

agents’ fields. An ADDM system can be generalized

into a set of components and viewed as depicted in

figure 4.1.We may generalize activities of the system

into request and response, each of which involves a

different set of components. Basic components of an

ADDM system are as follows.

Fig. 4.1: Overview of ADDM system.

Data: Data is the foundation layer of the architecture.

In distributed environment, data can be hosted in

various forms, such as online relational databases,

data stream, web pages, etc., in which purpose of the

data might be varied.

Communication: The system chooses the related

resources from the directory service, which maintains

a list of data sources, mining algorithms, data

schemas, data types, etc. The communication

protocols may vary depending on implementation of

the system, such as client-server, peer-to-peer etc.

Presentation: The user interface (UI) interacts with

the user as to receive and respond to the user. The

interface simplifies complex distributed systems into

user-friendly message such as network diagrams,

visual reporting tools, etc. On the other hand, when a

user requests for data mining through the UI, the

following components are involved.

Query optimization: A query optimizer analyses the

request as to determine type of mining tasks and

chooses proper resources for the request. It also

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 228
Volume 2, Issue 2, April 2011

determines whether it is possible to parallelize the

tasks, since the data is distributed and can be mined

in parallel.

Discovery Plan: A planner allocates sub-tasks with

related resources. At this stage, mediating agents play

important roles as to coordinate multiple computing

units since mining sub-tasks performed

asynchronously as well as results from those tasks.

On the other hand, when a mining task is done, the

following components are taken place,

Local Knowledge Discovery (KD): In order to

transform data into patterns which adequately

represent the data and reasonable to be transferred

over the network, at each data site, mining process

may take place locally depending on the individual

implementation.

Knowledge Discovery: Also known as mining, it

executes the algorithm as required by the task to

obtain knowledge from the specified data source.

Knowledge Consolidation: In order to present to the

user with a compact and Meaningful mining result, it

is necessary to normalize the knowledge obtained

from various sources. The component involves

complex methodologies to combine knowledge/

patterns from distributed sites. Consolidating

homogeneous knowledge/patterns is promising and

yet difficult for heterogeneous case.

5. Proposed Schema
 Here we propose a schema, the building and

managing of large-scale distributed systems is

becoming an increasingly challenging task.

Continuous intervention by user administrators

is generally limited in large-scale distributed

environments. System support is also needed for

configuration and reorganization when systems

evolve with the addition of new resources. The

primary goal of the management of distributed

systems is to ensure efficient use of resources

and provide timely service to users. Most of the

distributed system management techniques still

follow the centralized model that is based on the

client-server model. Centralization have

presented some problems, such as: 1) it could

cause a traffic overload and processing at the

manager node may affect its performance;2) it

does not present scalability in the increase of the

complexity of the network; 3) the fault in the

central manager node can leave the system

without a manager.

One model is the distributed

management where management tasks are

spread across the managed infrastructure and are

carried out at managed resources. The goal is to

minimize the network traffic related to

management and to speed up management tasks

by distributing operations across resources. The

new trend in distributed system management

involves using multi-agents to manage the

resources of distributed systems. Agents have

the capability to autonomously travel (execution

state and code) among different data repositories

to complete their task. The route may be

predetermined or chosen dynamically depending

on the results at each local data repository.

The concept of multi-agents promises

new ways of designing applications that better

use the resources and services of computer

systems and networks. For example, moving a

program

(e.g., search engine) to a resource (e.g.,

database) can save a lot of bandwidth and can be

an enabling factor for applications that otherwise

would not be practical due to network latency.

Conceptually, a multi-agent can migrate its

whole virtual machine from host to host; it owns

the code, not the resources. Multi-agents are the

basis of an emerging technology that promises to

make it very much easier to design, implement,

and maintain distributed systems. We have

found that multi-agents reduce network traffic,

provide an effective means of overcoming

network latency, and, perhaps most importantly,

through their ability to operate asynchronously

and autonomously of the process that created

them help us to construct more robust and fault

tolerant systems. The purpose of the proposed

multi-agent system is to locate, monitor, and

manage resources in distributed systems. The

system consists of a set of static and mobile

agents. Some of them reside in each node or

element in the distributed system. There are two

multi-agents named delegated and collector

agents that can move through the distributed

system. The role of each agent in the multi-agent

system, the interaction between agents, and the

operation of the system

5.1 Multi-Agent System Structure
The multi-agent system structure assumes that

each node in the system will have a set of agents

residing and running on that node[2]. These

agent types are the following:

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 229
Volume 2, Issue 2, April 2011

Client agent (CA) percepts service requests,

initiated by the user, from the system. The CA

may receive the request from the local user

directly. In the other case, it will receive the

request from the exporter agent coming from

another node.

Service list agent (SLA) has a list of the

resource agents in the system. This agent will

receive the request from the CA and send it to

the resource availability agent. If the reply

indicates that the requested resource is local then

the service list agent will deliver the request to

the categorizer agent. Otherwise, it will return

the request to the CA.

Resource availability agent (RAA) indicates

whether the requested resource is free and

available for use or not. It also indicates whether

the requested resource is local or remote. It

receives the request from the service list agent

and checks the status of the requested resource

through the access of the MIB. The agent then

constructs the reply depending on the retrieved

information from the database.

Resource agent (RSA) is responsible for the

operation and control of the resource. This agent

executes the on the resource. Each node may

have zero or more RSAs.

Router agent (RA) provides the path of the

requested resource on the network in case of

accessing remote resources. Before being

dispatched, the exporter agent will ask the router

agent for the path of the requested resource. This

in turn delivers it to the exporter agent.

Categorizer agent (CZA) allocates a suitable

resource agent to perform the user request. This

agent percepts inputs coming from the service

list agent. It then tries to find a suitable free

resource agent to perform the requested service.

Exporter agent (EA) is a mobile agent that can

carry the user request through the path identified

by the RA to reach the node that has the required

resource. It passes the requested resource id to

the RA and then receives the reply. If the router

agent has no information about the requested

resource, the EA will try to locate the resource

in the system. There are also two additional

mobile agent types exist in the system.

Delegated agent (DA) is a mobile agent that is

launched in each sub network. It is responsible

for traversing sub network nodes instead of the

exporter agent to do the required task and carry

results back to the exporter agent.

Collector agent (CTA) is a mobile agent that is

launched from the last sub network visited by

the exporter agent. It is launched when results

from that sub network become available. This

agent goes through the reversed itinerary of the

exporter agent trip. The CTA collects results

from the delegated agents and carries it to the

source node. All mobile agents used here are of

interrupt driven type.

5.2 System’s operation

The activity cycle of our multi-agent

system residing in a local data repository. The

client agent receives the service requests either

from the user or from an exporter agent. The

client agent then asks the service list agent for

the existence of a resource agent that can

perform the request. The service list agent

checks the availability of the required resource

agent by consulting a resource availability agent

to perform the requested service. The reply of

the resource availability agent describes whether

or not the resource is locally available and

whether or not there is a resource agent that can

perform the requested service. If the resource

availability agent then accepts the request, the

service list agent will ask the categorizer agent

to allocate a suitable resource agent to the

requested service and the resource agent will

perform the requested service. Otherwise, the

service list agent informs the client agent with

the rejection and is passed to the exporter agent.

The exporter agent asks the router agent for the

path of the required resource agent. Once the

path is determined, the exporter agent will be

dispatched through the network channel to the

destination node identified by that path. If the

router agent has no information about the

location of the required resource agent, the

exporter agent will search the distributed system

to find the location of the required resource

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 230
Volume 2, Issue 2, April 2011

agent and assign the required task to it.

Fig. 5.2.1: Overview of Agents activity.

As shown in Fig. 5.2.2, the exporter agent

traverses the sub networks of the distributed

system through its trip. At each sub network, a

delegated agent is launched to traverse the local

nodes of that sub network doing the required

task and carrying results of that task. The agents

of the social interface described in Fig. 5.2.1 are

implemented at each node in the system. There

are two approaches to collect results of the

required task and send these results back to the

source.

In traditional agent-based management systems

that use mobile agent, the exporter agent will

wait at each visited sub network until the

delegated agent finishes its work and obtains

results. Then, the exporter agent will take these

results and go to the next sub network in its

itinerary. The exporter agent will return to its

home sub network after visiting all the sub

networks determined in the itinerary. The home

sub network of the exporter agent is the sub

network from which it was initially dispatched.

The waiting of the exporter agent prevents

execution of tasks to be started in the other sub

networks. This approach is used in most of the

previously developed management systems in

which operation is based on mobile agents. In

the proposed multi-agent management system,

the exporter agent does not wait for results from

each sub network. It resumes its trip visiting

other sub networks, and at each sub network,

another delegated mobile agent is launched to

carry out management tasks instead of the

exporter agent. The exporter agent will be killed

at the last visited sub network in its itinerary.

When results from the last visited sub network

become available, another mobile agent called

collector agent is launched or dispatched from

this sub network to collect results from it and

other sub networks. The collector agent goes

through the reversed itinerary of the exporter

agent trip carrying results to the home sub

network. In this manner, operations can be done

in a parallel fashion at different sub networks

because there is no delay of the task submission

to local data repositories of these sub networks.

Fig. 5.2.2: Overview of network architecture

ADDM.

Conclusions

Distributed management for distributed systems

is becoming a reality due to the rapid growing

trend in internetworking and the rapid expanding

connectivity. This article describes a new multi-

agent system for the management of distributed

systems. The system is proposed to optimize the

execution of management functions in

distributed systems. The proposed system can

locate, monitor, and manage resources in the

system. The new technique in that system allows

management tasks to be submitted to sub

networks of the distributed system and executed

in a parallel fashion. The proposed system uses

two multi- agents. The first is used to submit

tasks to the sub networks of the distributed

system and the other collects results from these

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 231
Volume 2, Issue 2, April 2011

sub networks. The proposed system is compared

against traditional management techniques in

terms of response time, speedup, and efficiency.

A prototype has been implemented using

performance management as the case study. The

performance results indicate a significant

improvement in response time, speedup,

efficiency, and scalability compared to

traditional techniques. The use of JVM in the

implementation of the proposed system gives the

system a certain type of portability. Therefore, it

is desirable to use the proposed system in the

management of distributed systems. The

proposed system is limited to be applied to high-

speed networks that have bandwidth 100 Mb/s

or more. Also, the system cannot work when a

failure occurs. Future research will be related to

the security of mobile agents and of hosts that

receive them in the context of public networks.

Mobile agents should be protected against

potentially malicious hosts. The hosts should

also be protected against malicious actions that

may be performed by the mobile code they

receive and execute. So, a detailed design and

implementation of the whole secure system

should be considered as a future work. Also, the

high complexity of distributed systems could

increase the potential for system faults. Most of

the existing management systems assume that

there is no fault in the system. It would be

interesting to develop a fault tolerant

management system that introduces safety in the

system and attempts to maximize the system

reliability without extra hardware cost.

References:
[1] T.M. Chen, and S.S. Liu, ―A model and

evaluation of distributed network management

approaches,‖ IEEE J.Selected Areas Commun., vol.

20, no. 4,pp. 850–857, May 2002.

[2] T.C. Du, E.Y. Li, and A. Chang,―Mobile agents in

distributed network management,‖ Commun. ACM,

vol. 46, no. 7, pp. 127–132, July 2003.

[3] H. Ku, G.W.R. Ludere, and B.Subbiah, ―An

intelligent mobile agent framework for distributed

network management,‖in Proc. Globecom

’97Phoenix, pp. 160–164.

[4] N. R. Jennings, K. Sycara, and M. Wooldridge. A

roadmap of agent research and development. Journal

of Autonomous Agents and Multi-Agent Systems,

1(1):7–38, 1998.

[5] N. R. Jennings and S. Bussmann, ―Agent-based

control systems—Why are they suited to engineering

complex systems?‖ IEEE Control Syst.Mag., vol. 23,

no. 3, pp. 61–73, Jun. 2003.

[6] W. Brennan, M. Fletcher, and D. H. Norrie, ―An

agent-based approach to reconfiguration of real-time

distributed control systems,‖ IEEE Trans.Robot.

Autom., vol. 18, no. 4, pp. 444–449, Aug. 2002.

[7] J. Kosakaya, A. Kobayashi, and K. Yamaoka,

―Distributed supervisory system with cooperative

multi-agent FEP,‖ in Proc. 22nd Int. Conf.Distrib.

Comput. Syst. Workshops, 2002, pp. 633–638.

[8] R. B. Patel, Neeraj Goel, ―Mobile Agents in

Heterogeneous Networks: A Look on Performance,‖

Journal of Computer Science,2(11): 824-834, 2006.

[9] O'Hare G.M.P., Marsh D., Ruzzelli A., R. Tynan,

―Agents for Wireless Sensor Network Power

Management‖, in Proceedings of International

Workshop on Wireless and Sensor Networks

(WSNET-05), Oslo, Norway IEEE Press, 2005.

[10] Ajith Abraham, Crina Grosan, and Vitorino

Ramos, editors. Swarm Intelligence in Data

Mining, volume 34 of Studies in Computational

Intelligence. Springer, 2006.

[11] Sung W. Baik, Jerzy W. Bala, and Ju S.

Cho.Agent based distributed data mining. Lecture

Notes in Computer Science, 3320:42–45,2004.

[12] S. Bailey, R. Grossman, H. Sivakumar, and A.

Turinsky. Papyrus: a system for data mining over

local and wide area clusters and super-clusters. In

Supercomputing ’99: Proceedings of the 1999

ACM/IEEE conference on Supercomputing

(CDROM), page 63, New York, NY, USA, 1999.

ACM.

[13] R. J. Bayardo, W. Bohrer, R. Brice, A.Cichocki,

J. Fowler, A. Helal, V. Kashyap, T. Ksiezyk, G.

Martin, M. Nodine, and Others.InfoSleuth: agent-

based semantic integration of information in open

and dynamic environments. ACM SIGMOD Record,

26(2):195–206, 1997.

[14] F. Bergenti, M. P. Gleizes, and F.Zambonelli.

Methodologies And Software Engineering For Agent

Systems: The Agentoriented Software Engineering

Handbook. Kluwer Academic Publishers, 2004.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 232
Volume 2, Issue 2, April 2011

[15] A. Bordetsky. Agent-based Support for

Collaborative Data Mining in Systems Management.

In Proceedings Of The Annual Hawaii International

Conference On System Sciences, page 68, 2001.

[16] R. Bose and V. Sugumaran. IDM: an intelligent

software agent based data mining environment. 1998

IEEE International Conference on Systems, Man, and

Cybernetics, 3, 1998.

[17] L. Cao, C. Luo, and C. Zhang. Agent-Mining

Interaction: An Emerging Area. Lecture

Notes in Computer Science, 4476:60, 2007.

[18] J. Dasilva, C. Giannella, R. Bhargava,

H.Kargupta, and M. Klusch. Distributed data

mining and agents. Engineering Applicationsof

Artificial Intelligence, 18(7):791–807,

October 2005.

[19] S. Datta, K. Bhaduri, C. Giannella, R. Wolff,and

H. Kargupta. Distributed data mining in

peer-to-peer networks. Internet Computing,IEEE,

10(4):18–26, 2006.

[20] W. Davies and P. Edwards. Distributed

Learning: An Agent-Based Approach to Data-

Mining. In Proceedings of MachineLearning 95

Workshop on Agents that Learn from Other Agents,

1995.

[21] U. Fayyad, R. Uthurusamy, and Others. Data

mining and knowledge discovery in databases.

Communications of the ACM,39(11):24–26, 1996.

[22] Vladimir Gorodetsky, Oleg Karsaev, and

Vladimir Samoilov. Multi-agent technology

for distributed data mining and classification.In IAT,

pages 438–441. IEEE Computer

Society, 2003.

[23] Sven A. Brueckner H. Van Dyke

Parunak.Engineering swarming systems.

Methodologies and Software Engineering for Agent

Systems, pages 341–376, 2004.

Author Biographies

Dr. Anand Rao Akepogu. recieved B.Sc

(M.P.C) degree from Sri Venkateswara University,

Andhra Pradesh, India. He received B.Tech degree in

Computer Science & Engineering from University of

Hyderabad, Andhra Pradesh, India and M.Tech

degree in A.I & Robotics from University of

Hyderabad, Andhra Pradesh, India. He received Ph.D

degree from Indian Institute of Technology, Madras,

India. He is currently working as a Professor of

Computer Science & Engineering Department and

also as a Principal of JNTU College of Engineering,

Anantapur, Jawaharlal Nehru technological

University, Andhra Pradesh, India. Dr. Rao published

more than twenty research papers in international

journals and conferences. His main research interest

includes software engineering and data mining.

Thulasi.Bikku received B.Tech

degree in Information Technology

from Jawaharlal Nehru Technological

University, Hyderabad, Andhra

Pradesh, India and M.Tech degree in

Computer Science & Engineering

from Jawaharlal Nehru Technological

University,Kakinada, Andhra Pradesh, India. Her

main research interest includes Distributed Data

Mining and AI.

